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STRESS CONCENTRATION NEAR THE APEX OF A CRACK
BY THE COUPLE-STRESS THEORY OF ELASTICITY AND
THE METHOD OF PHOTOELASTICITY

Ya. M. Shiryaev UDC 539.30+620.171.5

The stress concentration near the apex of a crack in a transverse field of simple tension has already
been the object of investigations within the framework of couple-stress elasticity theory [1-5]. It follows from
[1-3] that the presence of couple-stresses results in a rise in the stress concentration near the crack apex.
This result "contradicts" the reducing effect of couple-stresses in the known problem about the stress concen-
tration near a circular hole in a tensile field. It is said in [4] that the presence of couple stresses does not
influence the magnitude of the stress-intensity factor, and the stress concentration near an elliptical hole in a
field of simple tension is considered in {5]. There results from an analysis of this paper that the stress con-
centration diminishes with the increase in a new elastic constant of the material [ introduced by the couple-
stress theory of elasticity.

Experimental papers in which the effect of the influence of couple-stresses on the stress concentration
near a crack would be clarified are still nonexistent judging by the literature.

This paper is devoted to a clarification of the effect of the influence of couple stresses on stress concen-
tration near a crack, both analytically and experimentally by the method of photoelasticity.

§1. The stress concentration near the apex of a crack in a transverse field of simple tension is consid-
ered in a coordinate system (Fig. 1).

It is useful to introduce the sum of normal stresses (invariant) into consideration, this sum having the
same value in classical and couple-stress theory and being developed from the solution of the Dirichlet prob-
lem {8, 7], inorder to determine the stress-intensity factor by means of couple-stress elasticity theory. It follows
from the expression for the stresses [8] that

G+ 0,= k(2 %c0s(0/2), (1.1
where k is the stress-intensity factor.

Let us introduce the complex variable z = x + iy = z, + regi, where z is a quantity characterizing the
position of the crack apex. Then (1.1) can be written in the form

1/
o, + 0, = Re {k( 2 ) ZJ. {1.2)

z—zy

Let us apply the complex variable method. According to [6, 7], the dependence between the left side of
(1.2) and the stress functions has the form

0, oy= 4Relp’(z)]. (1.3)

Comparing (1.2) and (1.3) and keeping in mind that (1.2) is valid only for values of z near z,, we obtain the ex-
pression for k in the form

k=2 3lim(z — z,)'/2¢’(2). 1.4

It is seen from (1.4) that the stress-intensity factors k are determined sufficiently simply if only the function
»'(z) is known near the crack apex.
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It is expedient to use conformal mapping in this problem. Let z = w(¢); then

)

_dp df ¢ (L
¢ (z)"‘T{fE‘m/(*

L)

<o

The point z, corresponding to the crack apex on the z plane hence goes over into the point £, on the ¢ plane.
The expression (1.4) becomes

k=22 im0 @) -0 @I G (1.5)

Let us take the mapping z = w(¢) = (a/2)(¢ = 1/ ¢) which converts a straight crack of length 24 along the
x axis centrally located relative to the origin in the z plane into a circular hole of unit radius in the ¢ plane.
The point z = a corresponding to the crack apex hence goes over into the point ¢ = 1 in the ¢ plane. The ex-
pression (1.5) is converted taking into account that ¢'(z) on the circular boundary has no singularity at ¢ =1
and becomes

2
"/-: . ;=1 (1.6)

The boundary conditions of the problem at infinity are a{®) = =p, a(°°) = T(;) = Tf,x = 0, while the couple-
stresses taking account of the relation between the moments and the force stresses [7] equal

i = pl® = 0,
The boundary conditions on the unit circle t = el 16 are
o,— it9=0, p,= 0. (1.7)

After the transformation of variables, the boundary conditions (1.7) acquire the form
o Oe(t) + 0@’ () + o’ () + 8(1 — v)ii¢ (1) — 2i0H /3t = 0,
Re{(i/2) 18(1 — v)¢"'(t) — 2i0H/dt]) =

where ¢, ¢, H are the Kolosov—Muskhelishvili —Mindlin potentials [7}; v is the Poisson ratio; and ! is a new
elastic constant introduced by couple-stress theory.

The desired stress function ¢(¢) is written in the form

®(t) = (pa/8)(g — 3/TY),

where I' =1+ %g—/'z—l—)y———m%)( ) ; Ki(a/20) and K;(a/21) are modified Bessel functions of the second kind

(MacDonald functions).
Using the expression (1.6) to estimate stress concentration, we obtain
k= (pV /41 + 3T). (1.8)

Let us analyze (1.8). In the limit case [! =0, " = 1, the point k = (pva/4)(1 + 3) = p/a] we obtain the
classical solution [8]. The quantity ! increases with the growth of I" and the stress-intensity factor k dimin-
ishes. In the limit case I — «; then k = pva /4. The change k/va = (p/4)(1 + 3/T) as a function of the ratio
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a/l ig shown in Fig, 2 for values of the Poisscon ratio v = § and 0.3 (curves 1 and 2, respectively).

§2. As is known, the couple~stress theory of elasticity yields the most perceptible corrections to the
solutions of classical elasticity theory for those problems in which the stress state has large gradients.

Among this class of problems is indeed the desired problem of the stress concentration near a crack
apex. The formulation of the experiment and its idea are based on examining the stress concentration near a
erack of different length in a stretched strip.

A polarization optical method at roor temperature was used to determine the stress concentration. The
atrip specimens were fabricated from ED-6 epoxy resin of 1.5 + 2.2 mm thickness. Cracks of different length
were cut into the specimens by a sharp knife at the temperature of the highly elastic state (on the order of
100-120°C). The cracks were separated from each other and from the strip edges by a sufficiently large
spacing so as to realize a uniformly stretched field far from the crack. The origination of stresses was not
allowed under mechanical treatment. The loading unit (2 press constructed specially for these tests) can be
mounted on the KSP-7 and PPU-7 polarization optical apparatuses (fabricated by A, A. Zhdanov Leningrad
State University) for the investigations.

Purely tensile forces were chosen so that the specimens would have sufficient maximal stresses while
remaining in the elastic stage of operation; the limit of proportionality of the material was 550 kg /cm?, the
elastic modulus was 40,000 kg/cm?, and the Poisson ratio was v = 0.40. Upon selecting the tensile forces, the
strain was checked by a stepwise rise in the load with a 30-min hold at the end of each step. The specimen
was checked as soon as the influence of creep became noticeable, The loading was cut off in the greatest strain
was not more than 60% of the proportionality limit corresponding to the strain,

Near the crack apex the noermal stress gy is expressed as

k [¢] . 0 . 30
Oy = ﬁcos —2-(1 -+ sin —-sin -—2-—) 2.1)

The stress-intensity factor can be determined in terms of oy for ¢ = 0 from (2.1), i.e.,

k=lima, }2r. 2.2)
70

=0
The quantity oy in the expression (2.2) is a function of r. For cracks with a small, but nonzero apex
radius, the stresses will be finite for r = 0 and the expression (2.1) will not be satisfied. However, near the
crack apex itself the stresses can be approximated by the expression €.1) (see [8], for example).

Near the crack apex oymax can be evaluated from the maximum order of the interference fringes nmax
by using the fundamental law of photoelasticity in the form Fymax = Cmax> where C is a constant of the speci-
men material of given thickness.

A specimen having several cracks of different lengths was tested according to the comparative method
of this investigation. The stress-intensity factors determined experimentally for any two cracks i and j were
hence connected by the relationship

k = Mnmaz)i/ Mrmaz)y,

/1.
lexp ’}”exp
where Alimax) is an increment on the order of the isochrome on the contour of the crack apex corresponding
to the increment in the applied load.

The high accuracy of this comparative method, which the author applied in investigating the stress con-
centration near a hole and an inhomogeneity [9], consists in using the ratio A{ynax)i /A Omax) jo whereupon the
errors due to edge effects, extrapolation, and other factors can be reduced to a minimum.

The difference in the increments of maximum order of the isochromes for cracks of different lengths
was found by graphical extrapolation using circular polarization in an enlarged image of the interference
fringes. An optical comparator was used fo determine the position of the orders and the boundary observa-
tions. Mainly monochromatic light with wavelength 546.1 ym was used.

As a result of the experimental investigation, a dependence of the stress-intensity factor Kexp on the
crack half-length a has been constructed in dimensionless form for the same strip material (Fig. 3). It is
seen from an examination of the experimental curve that kexp diminishes with the diminution of the crack
length, where the change is not proportional to Va, as is the result from classical theory.
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COMPRESSIVE STRENGTH OF MATERIALS

M. M. Muzdakbaev and V. §. Nikiforovskii UDC 539.4

A state of compression in material, rocks, machine parts, and structural elements is evidently very
common. As a measure of this state, the concept of uniaxial compressive strength was introduced and con~
sidered as a fundamental characteristic of the material. One might also suppose that a material is fractured
when the maximum tangential stress reaches the breaking point, which turns out to be half as large as the
compressive strength. It should be noted that the compressive strength depends rather strongly on many fac-
tors, including the shape of the sample, its dimensions and volume, and end conditions [1, 2]. Experimenters
long ago concluded that the uniaxial compressive strength is not a characteristic of the material [3, 4]. Actu-
ally, the description of the fracture patterns of samples recorded so far [2, 3, 5] with the formation of oblique
fracture surfaces or surfaces of discontinuity by a coaxial compressive load can more probably be related to
the shear or tensile stresses than to the compressive load. In addition, experimental and theoretical studies
have shown that in tests which at first glance seem simple, the pattern of the stressed state is complex, not
one-dimensional, and varies with the experimental conditions [6-9].

A number of results were obtained in [9] from a study of the stressed state of a sample under plain strain
by investigating the effects of dimensions, the correlation of properties, and the role of the inserts.

In the present paper we present a numerical study of the state of stress of tubular samples and consider
certain characteristic features which are interesting and important from the point of view of understanding the
significance of compressive strength. The calculation was performed by the method of finite elements, using
triangular-shaped elements [10]. In a cross section of a tubular sample along a meridional plane shown in
Fig. 1, D and d are the outside and inside diameters, L is the length of the sample, and L; is the length of the
inserts. The division into elements is shown in the upper symmetric half ABFE. The stressed state is char-
acterized by the four components of the stress tensor ¢4, oy, 0y, and 7ry. Since the pattern is symmetric
with respect to a quarter of the cylinder (00’ is the axis of symmetry and AB is the plane of symmetry), we
set up and solve the problem for the region ABFE. We formulate the following boundary conditions:

v=0, 1,,= 0; z=L/2, di2 < r<D/2;
u=0,v=const; z2=0L, d2<r << D/2; (1)
t,,=0, 0,=0; r=4d/2, D2, L2 <2< L.
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